

Institute of Atomic Physics

Commissariat à l'énergie atomique et aux énergies alternatives

Plasma and laser processing of powders for nuclear applications (LAPART)

Project coordinators:

Gheorghe Dinescu

National Institute for Laser, Plasma and Radiation Physics

Christian Grisolia

Institut de Recherche sur la Fusion Magnétique

2nd Joint CEA-IFA Symposium, 17-18th of October 2012, Magurele, Romania

Motivation and scope of the project

<u>Issues :</u>

- Dust incidence in fusion machines tritium accumulation & high explosive potential of several hundreds of kg of dust - are expected to be produced in next-generation plasma fusion reactors -ITER;
- Toxiciy of powders: the health hazards posed by the handling and removal of such 'waste' are not known;
- •Technological significance of particles and powders.

Scope of LAPART:

- To obtain particulates of materials related to nuclear technologies: focus on W, C, and Al or Mg as substitutes for Be; Tools: plasma and laser techniques;
- To investigate properties such as size, surface chemistry, structure, etc.
- To explore how to handle / modify / destroy and use such powders in toxicology studies, hydrogen isotopes adsorption studies, stabilization against the explosive potential.

Task sharing

Romanian partner:

- Fabrication of particles (W, C, AI) : plasma and laser techniques

- ablation of metal targets in liquids;
- etching of matrix in mixed materials;
- plasma cluster sources;

- **Particle characterization:** size, morphology, structure and chemical composition;

-Treatments by laser/plasma of particles/ powders aimed at changing their morphology, structure, surface chemistry.

French partner:

-Characterization of particles: particles size distributions, specific surface area;

-Toxicity studies: particles deposited in lung epithelium and toxicity analyzed;

-Adsorption, suspension, mobilization

studies: analysis of deuteration and deuterium desorption; dust suspension study, dust mobilization methods;

-Explosivity – possible, a long term objective.

Results / first year

Particles generation / characterization:

- Setup and technique for obtaining metal particles embedded in a carbon matrix;
- Tungsten and Aluminum particles embedded in a carbon matrix via plasma;
- Experiments for plasma etching the carbon matrix, at low and atmospheric pressure;
- Setup and technique for particles production by pulsed laser ablation in liquids;
- •Tungsten and Aluminum particles obtained by laser ablation in acetone and water;
- Size distributions determined sizes from tens of nm to microns.

Exchanges: Christian Grisolia, Bucharest in April 2011;

Gheorghe Dinescu - participation to CIP 2011- Nantes, E-MRS - Nice.

<u>Publications</u>: 3 contributions to International conferences; 1 paper in work.

Scientific achievements 2nd year - outline

- Previous results;
- Setup and technique for fabrication of W particles by a plasma based cluster source;
- Setup for fluidization of powders by plasma jets at atmospheric pressure;
- Surface modification of powders in a fluidized bed plasma reactor;
- Future work, perspectives and benefits.

Particle production: plasma cluster source

Synthesis of W particles by a plasma based cluster source

SEM image of the spot on the substrate

Parameters:

RF Power: 100W

Flow rate: 10 scmm Argon

Deposition time: 30 min

U

A

C

Pressure in source: 8.5E-1 mbar

Pressure in chamber: 7.3 x10⁻³ mbar

Particle morphology

Size distribution

Particle structure: TEM and HRTEM

Acknowledgments: Leona Nistor, INFM

Two types of particles: a) showing facets; b) with dendritic branches
Particles are formed from nanocrystals of 3-5 nm oriented in the faceted particles, and less oriented in the dendritic particles

Powder modification

Fluidization of W particles in a plasma jet

Problems in powders modification:

- make each particle to come in contact with plasma!
- Induce modification: oxidation, nitriding, structure?

Solution: Fluidization in a plasma jet

- contact: ensured by particles mixing with plasma
- modification: ensured by reactive plasma species

Fluidization Designs

RF plasma jet - atmospheric pressure

Previously realized in the frame of EFDA – EURATOM, collaboration with CEA

Advantage: atmospheric pressure, vacuum not needed!!!

Fluidization aspects (industrial W powder)

Fluidization effects: particles separation

Modification of chemical composition -EDX

Element/ Sample Code	W initial	Ar plasma a (reactor)	Ar plasma B (trap)	Ar/O ₂ plasma a	Ar/O ₂ plasma b	Ar/N ₂ plasma a	Ar/N2 plasma b
С	47.80	19.37	29.80	15.72	18.31	29.28	29.79
Ν	23.01	30.28	28.81	28.36	27.94	32.94	28.35
0	15.34	37.77	24.47	42.86	42.58	18.07	22.89
W	13.85	12.57	16.93	13.06	11.17	19.71	18.97
		Reduction of carbon content		Important increase of oxygen content		Slight increase of nitrogen content	

Modification of chemical bonding - XPS

Modification of chemical bonding - XPS

Conclusions

Results / second year

Particles generation / characterization/transformation:

•A cluster plasma source was elaborated and its ability of producing tungsten particles was proved;

- •The size of the tungsten particles is in the range 160-200 nm;
- •A fluidized bed reactor for particles modification was developed;
- •Surface modification of industrial made tungsten particle was proved;

New projects and students:

- In preparation: a common project proposal in the frame of EURATOM;
- 1 PhD student starting October 2012 on a topic of particles in plasmas;

Exchanges: Christian Grisolia, Bucharest in Dec. 2011, Oct. 2012;
Publications: 1 paper published, 1 paper in work; 4 contributions to

International conferences.

Further work

 control of particle size distribution; more detailed characterization; production of larger quantities, deuteration of particles;

• study of the health and nuclear safety issues posed by the nanoparticles.

<u>Benefits:</u>

- new research opportunities and projects, good practice dissemination;
- know-how to produce metal nanoparticles by means of plasma and laser, powder modification techniques – also, industrial relevance;
- *research perspectives* in the field of nanomaterials with controlled properties, beyond those envisioned by the scope of the present project;

Thank you for your attention!

Acknowledgments: **Tomy Acsente**, for particle synthesis work **Bogdana Mitu**, for particle characterization work